
Testing	Objects

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	9.4

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	of	this	lesson

• We	can	only	test	observable	behavior
– observables	are	not	fields

• We	need	to	decide	what	properties	are	
important,	and	test	those.
– we	can’t	use	equal?

2

An	example

• Let’s	consider	a	really	simple	interface:

3

StupidRobot<%>
;; A StupidRobot represents a robot moving along a one-dimensional line,
;; starting at position 0.

(define StupidRobot<%>
(interface ()

;; a new StupidRobot<%> is required to start at position 0

;; -> StupidRobot<%>
;; RETURNS: a Robot just like this one, except moved one
;; position to the right
move-right

;; -> Integer
;; RETURNS: the current x-position of this robot
get-pos

)) The	only	observable	is	the	
position	of	the	robot.

Scenario	and	Observation

If	we	have	a	correct	implementation	of	
StupidRobot<%>,	the	following	test	should	pass:

(local
((define r0 ..a new StupidRobot<%>..)
;; move r0 right twice
(define r1 (send (send r0 move-right) move-right)))
;; get-pos should then return 2
(check-equal
(send r1 get-pos)
2))

The	"obvious"	implementation
(define Robot1%

(class* object% (StupidRobot<%>)

(init-field [x 0])
;; interp: the position of the robot.

(super-new)

(define/public (move-right)
(new Robot1% [x (+ x 1)]))

(define/public (get-pos)
x)

))

Here	the	observable	is	the	
value	of	a	field.
Of	course,	our	choice	of	x for	
the	field	name	is	arbitrary.

You	could	name	fields	anything	you	
want

(define Robot2%
(class* object% (StupidRobot<%>)

(init-field [blerch 0])
;; interp: the position of the robot.

(super-new)

(define/public (move-right)
(new Robot2% [blerch (+ blerch 1)]))

(define/public (get-pos)
blerch)

))

Of	course,	our	choice	of	x for	
the	field	name	was	arbitrary.		
We	could	have	named	it	
anything	we	wanted,	so	long	
as	we	gave	it	a	proper	
interpretation.

But	we	could	have	done	it	differently
(define Robot3%

(class* object% (StupidRobot<%>)

(init-field [y 0])
;; interp: the negative of the position of the robot.

(super-new)

(define/public (move-right)
(new Robot3% [y (- y 1)]))

;; RETURNS: the x-position of the robot
(define/public (get-pos)

(- y))

))

Here	the	observable	 is	not the	value	of	
any	field.		The	observation	method	
translates	the	field	value	into	the	
external	value	of	the	observable.

Or	we	could	have	done	it	very	
differently

(define Robot4%
(class* object% (StupidRobot<%>)

(init-field [x empty])
;; Interp:
;; a list whose length is equal to the position of the robot

(super-new)

(define/public (move-right)
(new Robot4% [x (cons 99 x)]))

;; RETURNS: the x-position of the robot
(define/public (get-pos)

(length x))

))

Puzzle:	the	other	two	
implementations	would	
work	fine	if	we	had	a	
move-left method	as	
well	as	move-right.		
How	could	you	modify	
this	implementation	to	
handle	move-left?

All	three	of	these	implementations	
have	the	SAME	observable	behavior

• no	combination	of	scenarios	and	observations	
can	tell	them	apart!

• If	these	are	the	only	methods	and	
observations	we	have	on	these	objects,	then	
we	don't	care	which	implementation	we	use–
they	will	behave	the	same	in	any	program.

• We	could	even	write	something	like

10

Choose	a	random	implementation
;; -> StupidRobot<%>
(define (new-robot)
(local
((define i (random 3)))
(cond
[(= i 0) (new Robot1%)]
[(= i 1) (new Robot2%)]
[(= i 2) (new Robot3%)]
[(= i 3) (new Robot4%)))

Returns	a	random	number	
between	0	and	3

Contracts	and	Interfaces	(again)
;; move-right-by-distance
;; : Robot<%> Nat -> Robot<%>
(define (move-right-by-distance r n)
(cond
[(zero? n) r]
[else (move-right-by-distance

(send r move-right)
(- n 1)]))

12

This	works	with	ANY	class	
that	implements	
Robot<%>.			

Contracts	should	be	in	terms	of	
interfaces,	not	classes.

We	need	to	change	the	way	we	write	
tests

• Our	tests	should	work	with	any	
implementation	of	StupidRobot<%>	.

• We	construct	a	scenario,		in	which	we	create	
some	objects,	send	them	some	messages,	and	
see	what	the	observables	are.

• The	tests	talk	only	through	the	interface.

13

A	Simple	Scenario

(begin-for-test
(local
((define r0 (new-robot))
;; move r0 right twice
(define r1 (send (send r0 move-right) move-right)))

;; get-pos should then return 2
(check-equal?

(send r1 get-pos)
2)))

(begin-for-test
(local
((define r0 (new-robot))
(define r1 (move-right-by-distance r0 3)))

(check-equal?
(send r1 get-pos)
3)))

14

Observables	in	the	problem	sets

• In	our	problem	sets,	we've	required	you	to	
provide	just	enough	observables	so	that	our	
automated	testing	routines	can	see	if	you've	
solved	the	problem.

• In	a	test,	we	create	a	scenario	and	then	check	the	
observables	of	the	final	state.

• The	set	of	observables	in	the	problem	set	is	
purposely	minimal,	in	order	to	give	you	the	
maximum	freedom	in	implementing	the	objects.

15

You	may	need	to	add	some	
observables	for	debugging

• The	set	of	observer	methods	in	the	problem	sets	
is	purposely	minimal,	in	order	to	give	you	the	
maximum	freedom	in	implementing	the	objects.

• You	may	need	to	add	some	observation	methods	
for	your	own	testing and	debugging,	so	you	can	
see	what	is	going	on	inside	your	objects.

• That's	ok,	but	give	them	names	like	for-
test:whatever and	do	NOT	use	them	for	any	
other	purpose.

16

Example	of	a	scenario	using	a	test	
method

(define w1 (make-world 5))
(define w2 (send w1 on-key "n"))
(define w3 (send w2 on-key "n"))
...
(check-equal?

(length
(send w3 for-test:rectangles))
2
"After 2 'n's, there should be two

rectangles")

You	can’t	use	equal? on	objects

• In	Racket,	equal?	on	objects	measures		
whether		its	arguments	are	the	same object.

• In	Racket,	you	can	have	two	different	objects	
with	exactly	the	same	values	in	the	fields.

• We	say	that	objects	have	identity.
• This	will	make	more	sense	next	week.
• In	the	meantime,		here’s	an	example:

18

Example	of	object	identity
(let ((r1 (new-robot)))

(equal? r1 r1)) è true

(let ((r1 (new-robot)))
(let ((r2 r1))
(equal? r1 r2))) è true

(let ((r1 (new Robot1%))
(r2 (new Robot1%)))

(equal? r1 r2)) è false

19

Luckily,	most	of	the	time	we	can	avoid	
this.

• Usually,	we’re	not	interested	in	whether	we	
have	the	same	object.		

• We	just	care	that	our	new	object	has	the	right	
observable	properties.

20

Key	Points	of	this	lesson

• We	can	only	test	observable	behavior
– observables	are	not	fields

• We	need	to	decide	what	properties	are	
important,	and	test	those.
– problem	set	will	specify	the	interfaces		that	our	tests	
rely	on.

– we	can’t	use	equal?
– test	by	creating	scenarios	and	checking	whether	your	
objects	have	the	right	properties	afterwards.

– ok	to	add	for-test:	methods,	but	only	for	debugging.

21

Next	Steps

• Study	example	09-6-testing.rkt	in	the	
Examples	folder.

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

22

